Copied to
clipboard

G = C22×C13⋊C4order 208 = 24·13

Direct product of C22 and C13⋊C4

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×C13⋊C4, D263C4, D13.C23, D26.7C22, C26⋊(C2×C4), D13⋊(C2×C4), C13⋊(C22×C4), (C2×C26)⋊2C4, (C22×D13).3C2, SmallGroup(208,49)

Series: Derived Chief Lower central Upper central

C1C13 — C22×C13⋊C4
C1C13D13C13⋊C4C2×C13⋊C4 — C22×C13⋊C4
C13 — C22×C13⋊C4
C1C22

Generators and relations for C22×C13⋊C4
 G = < a,b,c,d | a2=b2=c13=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 318 in 54 conjugacy classes, 32 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C23, C13, C22×C4, D13, D13, C26, C13⋊C4, D26, C2×C26, C2×C13⋊C4, C22×D13, C22×C13⋊C4
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C13⋊C4, C2×C13⋊C4, C22×C13⋊C4

Character table of C22×C13⋊C4

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H13A13B13C26A26B26C26D26E26F26G26H26I
 size 1111131313131313131313131313444444444444
ρ11111111111111111111111111111    trivial
ρ211-1-1-111-11-1-1-1-1111111-1-1-1-11-1-111    linear of order 2
ρ311-1-1-111-1-11111-1-1-1111-1-1-1-11-1-111    linear of order 2
ρ411111111-1-1-1-1-1-1-1-1111111111111    linear of order 2
ρ51-1-11-1-111-1-1-11111-11111-1-1-1-111-1-1    linear of order 2
ρ61-11-11-11-1-111-1-111-1111-1111-1-1-1-1-1    linear of order 2
ρ71-11-11-11-11-1-111-1-11111-1111-1-1-1-1-1    linear of order 2
ρ81-1-11-1-111111-1-1-1-111111-1-1-1-111-1-1    linear of order 2
ρ91-11-1-11-11-i-iii-i-iii111-1111-1-1-1-1-1    linear of order 4
ρ101-1-1111-1-1-ii-i-ii-iii1111-1-1-1-111-1-1    linear of order 4
ρ111-11-1-11-11ii-i-iii-i-i111-1111-1-1-1-1-1    linear of order 4
ρ121-1-1111-1-1i-iii-ii-i-i1111-1-1-1-111-1-1    linear of order 4
ρ1311-1-11-1-11ii-ii-i-ii-i111-1-1-1-11-1-111    linear of order 4
ρ141111-1-1-1-1i-ii-ii-ii-i111111111111    linear of order 4
ρ1511-1-11-1-11-i-ii-iii-ii111-1-1-1-11-1-111    linear of order 4
ρ161111-1-1-1-1-ii-ii-ii-ii111111111111    linear of order 4
ρ174-44-4000000000000ζ131213813513ζ13111310133132ζ139137136134139137136134ζ13111310133132ζ139137136134ζ1312138135131312138135131312138135131311131013313213913713613413111310133132    orthogonal lifted from C2×C13⋊C4
ρ184444000000000000ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ13111310133132    orthogonal lifted from C13⋊C4
ρ1944-4-4000000000000ζ139137136134ζ131213813513ζ131113101331321311131013313213121381351313111310133132139137136134ζ139137136134139137136134131213813513ζ13111310133132ζ131213813513    orthogonal lifted from C2×C13⋊C4
ρ204-44-4000000000000ζ13111310133132ζ139137136134ζ131213813513131213813513ζ139137136134ζ131213813513ζ131113101331321311131013313213111310133132139137136134131213813513139137136134    orthogonal lifted from C2×C13⋊C4
ρ2144-4-4000000000000ζ13111310133132ζ139137136134ζ13121381351313121381351313913713613413121381351313111310133132ζ1311131013313213111310133132139137136134ζ131213813513ζ139137136134    orthogonal lifted from C2×C13⋊C4
ρ224-4-44000000000000ζ131213813513ζ13111310133132ζ139137136134ζ13913713613413111310133132139137136134131213813513131213813513ζ131213813513ζ1311131013313213913713613413111310133132    orthogonal lifted from C2×C13⋊C4
ρ2344-4-4000000000000ζ131213813513ζ13111310133132ζ13913713613413913713613413111310133132139137136134131213813513ζ13121381351313121381351313111310133132ζ139137136134ζ13111310133132    orthogonal lifted from C2×C13⋊C4
ρ244444000000000000ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ131213813513    orthogonal lifted from C13⋊C4
ρ254-4-44000000000000ζ139137136134ζ131213813513ζ13111310133132ζ1311131013313213121381351313111310133132139137136134139137136134ζ139137136134ζ13121381351313111310133132131213813513    orthogonal lifted from C2×C13⋊C4
ρ264-4-44000000000000ζ13111310133132ζ139137136134ζ131213813513ζ1312138135131391371361341312138135131311131013313213111310133132ζ13111310133132ζ139137136134131213813513139137136134    orthogonal lifted from C2×C13⋊C4
ρ274444000000000000ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ139137136134    orthogonal lifted from C13⋊C4
ρ284-44-4000000000000ζ139137136134ζ131213813513ζ1311131013313213111310133132ζ131213813513ζ13111310133132ζ13913713613413913713613413913713613413121381351313111310133132131213813513    orthogonal lifted from C2×C13⋊C4

Smallest permutation representation of C22×C13⋊C4
On 52 points
Generators in S52
(1 40)(2 41)(3 42)(4 43)(5 44)(6 45)(7 46)(8 47)(9 48)(10 49)(11 50)(12 51)(13 52)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(1 14)(2 22 13 19)(3 17 12 24)(4 25 11 16)(5 20 10 21)(6 15 9 26)(7 23 8 18)(27 40)(28 48 39 45)(29 43 38 50)(30 51 37 42)(31 46 36 47)(32 41 35 52)(33 49 34 44)

G:=sub<Sym(52)| (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,14)(2,22,13,19)(3,17,12,24)(4,25,11,16)(5,20,10,21)(6,15,9,26)(7,23,8,18)(27,40)(28,48,39,45)(29,43,38,50)(30,51,37,42)(31,46,36,47)(32,41,35,52)(33,49,34,44)>;

G:=Group( (1,40)(2,41)(3,42)(4,43)(5,44)(6,45)(7,46)(8,47)(9,48)(10,49)(11,50)(12,51)(13,52)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (1,14)(2,22,13,19)(3,17,12,24)(4,25,11,16)(5,20,10,21)(6,15,9,26)(7,23,8,18)(27,40)(28,48,39,45)(29,43,38,50)(30,51,37,42)(31,46,36,47)(32,41,35,52)(33,49,34,44) );

G=PermutationGroup([[(1,40),(2,41),(3,42),(4,43),(5,44),(6,45),(7,46),(8,47),(9,48),(10,49),(11,50),(12,51),(13,52),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(1,14),(2,22,13,19),(3,17,12,24),(4,25,11,16),(5,20,10,21),(6,15,9,26),(7,23,8,18),(27,40),(28,48,39,45),(29,43,38,50),(30,51,37,42),(31,46,36,47),(32,41,35,52),(33,49,34,44)]])

C22×C13⋊C4 is a maximal subgroup of   D26.Q8
C22×C13⋊C4 is a maximal quotient of   D13⋊M4(2)  D26.C23  Dic26.C4  D52.C4

Matrix representation of C22×C13⋊C4 in GL5(𝔽53)

10000
052000
005200
000520
000052
,
520000
052000
005200
000520
000052
,
10000
015382152
016382152
015392152
015382252
,
300000
021381532
01392151
005200
02139146

G:=sub<GL(5,GF(53))| [1,0,0,0,0,0,52,0,0,0,0,0,52,0,0,0,0,0,52,0,0,0,0,0,52],[52,0,0,0,0,0,52,0,0,0,0,0,52,0,0,0,0,0,52,0,0,0,0,0,52],[1,0,0,0,0,0,15,16,15,15,0,38,38,39,38,0,21,21,21,22,0,52,52,52,52],[30,0,0,0,0,0,21,1,0,21,0,38,39,52,39,0,15,21,0,1,0,32,51,0,46] >;

C22×C13⋊C4 in GAP, Magma, Sage, TeX

C_2^2\times C_{13}\rtimes C_4
% in TeX

G:=Group("C2^2xC13:C4");
// GroupNames label

G:=SmallGroup(208,49);
// by ID

G=gap.SmallGroup(208,49);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-13,40,3204,619]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^13=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

Export

Character table of C22×C13⋊C4 in TeX

׿
×
𝔽